皆さんこんにちは!
バイオクリーンサービスの更新担当の中西です!
さて今回は
~負荷計算の基礎:外皮・日射・内部発熱・換気・時刻変動🧮🏗️~
空気線図が“質”なら、負荷計算は“量”。どれだけの冷房・暖房・加湿・除湿が必要なのか——外皮(日射・熱貫流)、内部(人・照明・機器)、換気、浸入外気を足し合わせ、時刻別にプロットしてピークを見極めます。本回は考え方→式→落とし穴→実務の近道の順で整理します。📐
1|負荷の構成🧱
• 外皮負荷:窓・壁・屋根・床から出入りする熱。U値とΔT(外気-室内)で概算。窓は日射熱取得係数(η)が支配的。
• 内部負荷:人(顕熱+潜熱)・照明・機器。稼働スケジュールが命。
• 換気負荷:必要外気量に伴う顕熱/潜熱。夏は潜熱、冬は顕熱が重い。
• 浸入外気:隙間風・扉開閉。気密・風圧差・スタック効果に依存。
2|窓と日射の“インパクト”☀️
• 同じ室でも方位で負荷は別物。西日は短時間に高ピーク、南は持続、北は拡散光。
• ブラインド/ルーバの遮蔽係数で実効ηを下げると、機器容量を落とせる。室内側遮蔽より外付けが効く。🕶️
3|内部発熱のリアル🧑🤝🧑💻
• 人の顕熱/潜熱は活動で変わる。会議室は潜熱寄り、オフィスはPCと照明で顕熱寄り。
• 待機電力の積み上げを忘れがち。24h機器(サーバ/冷蔵庫)は夜間のベース負荷を作る。
4|換気負荷とCO₂📦
• 必要換気量は人員×外気量/人またはCO₂目標値で設定。外気が高温多湿なら全熱交換器や外気処理機を用意。
• 扉の開閉が多い用途(店舗/飲食)は浸入外気が支配的。風除室やエアカーテンで侵入潜熱を削る。
5|時間軸で見る⌛️
• ピーク同時性:西面窓と会議室のピークが重なると冷房容量は跳ねる。用途別ピークのズレを作る設計(ゾーニング)が省エネに効く。
• 熱容量:RC造は遅れが大きく、日中ピークを夜間にずらせる。ナイトパージと相性◎。
6|概算の“速い式”⚡️
• 外皮顕熱:Σ(U×A)×ΔT
• 日射:A×η×日射強度×遮蔽係数
• 内部:人×(顕熱+潜熱)+照明×W+機器×W
• 換気顕熱:1.2×V×ΔT(V[m³/s])/換気潜熱:0.68×V×ΔX(ΔX[g/kg]) > まずは概算で“効いている要素”を見つけ、詳細計算へ進むのが時短のコツ。⏱️
7|落とし穴と是正🕳️→🛠️
• 窓面積を侮る:設計終盤で機器容量が増え、ダクト/配管も太り天井が納まらない。→初期に遮蔽とガラス仕様を確定。
• 人員想定が甘い:オフィスのフリーアドレスで密度が日によって倍。→CO₂制御/VAVで変動対応。
• 換気“増し過ぎ”:感染症対策で常時最大外気→冬の乾燥/ドラフト。→時間帯/CO₂連動+二次加熱。
8|チェックリスト✅
☐ 方位・ガラス仕様・遮蔽の組み合わせを検討した
☐ 人・照明・機器のスケジュールを載せた
☐ 換気量はCO₂/用途要件の両面で根拠を持つ
☐ ピーク同時性と遅れを図で説明できる
9|まとめ🌈
負荷計算は“どこに効いているか”を見抜く作業。窓・人・換気・時間の4点を押さえれば、過大容量を避けつつ快適を守る道筋が見えます。次回は方式選定(個別/セントラル/VRF/チラー)へ。🧩